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Abstract. Knowledge Bases (KBs) and textual documents contain rich
and complementary information about real-world objects, as well as re-
lations among them. While text documents describe entities in freeform,
KBs organizes such information in a structured way. This makes these
two information representation forms hard to compare and integrate, lim-
iting the possibility to use them jointly to improve predictive and analyti-
cal tasks. In this article, we study this problem, and we propose KADE, a
solution based on a regularized multi-task learning of KB and document
embeddings. KADE can potentially incorporate any KB and document
embedding learning method. Our experiments on multiple datasets and
methods show that KADE effectively aligns document and entitie em-
beddings, while maintaining the characteristics of the embedding models.

1 Introduction

In recent years, the open data and open knowledge movements gain more and
more popularity, deeply changing the Web, with an exponential growth of open
and accessible information. Wikipedia is the most successful example of this
trend: it is among the top-5 most accessed Web sites and offers more than
40 million articles. Based on Wikipedia, several Knowledge Bases (KBs) have
been created, such as FreeBase and DBpedia. Wikidata is a sibling project of
Wikipedia which focuses on the construction of a collaboratively edited KB.

It is therefore natural to ask, how precise and complete information can be
retrieved from such open repositories. One of the main challenges arising from
this question is data integration, where knowledge is usually distributed and
complementary, and needs to be combined to get a holistic and common view of
the domain. We can envision two common cases where this challenge is relevant:
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when users need open knowledge from different repositories, and when users need
to combine open and private knowledge.

Key to the success of data integration is the alignment process, i.e. the com-
bination of descriptions that refer to the same real-world object. This is because
those descriptions come from data sources that are heterogeneous not only in
content, but also in structure (different aspects of an object can be modelled in
diverse ways) and format, e.g. relational database, text, sound and images. In
this article, we describe the problem of KB entity-document alignment. Different
from previous studies, we assume that the same real-world object is described as
a KB entity and a text document. Note that the goal is not to align an entity with
its surface forms, but rather with a complete document. We move a step towards
the solution by using existing embedding models for KBs and documents.

A first problem we face in our research is how to enable comparison and
contrast of entities and documents. We identify embedding models as a possible
solution. These models represent each entity in a KB, or each document in a
text corpus, by an embedding, a real-valued vector. Embeddings are represented
in vector spaces which preserve some properties, such as similarity. Embeddings
gained popularity in a number of tasks, such as finding similar entities and
predicting new links in KBs, or comparing documents in a corpus.

So far, there are no algorithms to create embeddings starting form descrip-
tions in different formats. Moreover, embeddings generated by different methods
are not comparable out of the box. In this study, we ask if is it possible to
represent embeddings from two different models in the same vector space, which
(i) brings close embeddings describing the same real world object, and (ii) pre-
serves the main characteristics of the two starting models ?

Our main contribution is KADE, a regularized multi-task learning approach
for representing embeddings generated by different models in a common vector
space. KADE is a generic framework and it can potentially work with any pair of
KB and document embedding models. To the best of our knowledge, our study
is the first to present a generic embedding model to deal with this problem.
Our experiments show that KADE integrates heterogeneous embeddings based
on what they describe (intuitively, embeddings describing the same objects are
close), while preserving the semantics of the embedding models it integrates.

2 Related Work

Document Embedding. Paragraph Vector [4], also known as Doc2vec, is a pop-
ular document embedding model, based on Word2vec [6]. It has two variants:
Distributed Memory and Skip Gram. They represent each document by an em-
bedding such that the learned embeddings of similar documents are close in the
embedding space. Document embeddings can also be learned with neural models
like CNN and RNN [3,12], topic models, or matrix factorization. Furthermore,
pre-trained embeddings from multiple models can be combined in an ensemble
using dimensionally reduction techniques [20,10].



KB Embedding. Translation-based embedding models like TransE [1], TransR [5],
and TransH [17] have been shown to successfully representing KB entities. Apart
from entities, these models also represent each relation by an embedding. They
aim to improve the link prediction task and treat each triple as a relation-specific
translation. Several other embedding models have since been introduced [15,8].
RDF2Vec [9] uses the same principle as Word2vec in the context of a KB and
represents each entity by an embedding. Other type of KB embedding models
include neural, tensor and matrix based methods [7].

Combining Text and KB. Several approaches improve KB embeddings by incor-
porating textual information. [14] exploits lexical dependency paths extracted
from entities mentioned in documents. [21] and [16] jointly learn embeddings
of words and entities, by using an alignment loss function based on the co-
occurrence of entity and words in its descriptions, or Wikipedia anchors, respec-
tively. A similar approach has been used for named entity disambiguation [19].
DKRL [18] treats text descriptions as head and tail entities, and ignores the
linguistic similarity while learning KB embeddings.

Further, multiple pre-trained embeddings can be combined into one multi-
modal space. [13] concatenates embeddings of aligned images, words, and KB
entities, then fuses them via dimensionality reduction.

Regularized Multi-Task Learning (MTL). Regularized MTL [2] exploits relat-
edness between multiple tasks to simultaneously learn their models. It enforces
task relatedness by penalizing deviations of individual tasks using regularization.

In contrast to these methods, our goal is to align documents with entities,
while at the same time retaining the properties of both document and KB em-
beddings. Our model is flexible since it does not require a predefined alignment
loss function, and learns by means of regularization through task-specific repre-
sentations of documents and KB. It does not depend on the availability of further
linguistic resources like a dependency parser, careful extraction of features like
anchor text, or defining a separate alignment loss function. Our solution aims
at preserving linguistic and structural properties encoded in the document and
KB embeddings respectively, while also representing them in a common space.

3 Preliminaries

Knowledge Bases and Documents. A Knowledge Base K contains triples kj =
{(h, r, t) | h, t ∈ E ; r ∈ R}, where E and R are the sets of entities and relations,
respectively. (h, r, t) indicates that the head entity h and tail entity t are related
by a relation r. Entities in KBs, such as Freebase and DBPedia, describe real-
world objects like places, people, or books.

Text is the most popular way to describe real-world objects. It is usually
organised in documents, which delimit the description to a specific object or
concept, such as a country or a person. Formally, a document d in a corpus D is
represented as a sequence 〈w1, . . . , wi, . . . , wnd

〉, where |d| = nd, and wi denotes
a word in the corpus drawn from a word vocabulary W.



For example, Wikipedia contains a textual document about Mike Tomlin, the
head coach of Pittsburgh Steelers, at https://en.wikipedia.org/wiki/Mike_
Tomlin (denoted dmt); FreeBase contains a graph-based description of Mike
Tomlin, here identified by m.0c5f j4, e.g. the triple (m.0c5f j, current team head coached,

m.05tfm) states that Mike Tomlin (the head entity) is the head coach (the re-
lation) of Pittsburgh Steelers (the tail entity, m.05tfm).

We name such different forms of information as descriptions of real-world
objects, e.g. dmt and m.0c5f j are two different descriptions of Mike Tomlin.

Embeddings. Embeddings are dense vectors in a continuous vector space which
could be regarded as another representation of descriptions5. Embeddings gained
popularity in recent years, due to their successful applications [6,3,12].

In this study, we consider two families of embedding models: the translation-
based models for Knowledge Bases and the paragraph vector models for docu-
ments. The models of the former family represent KB entities as points in the
continuous vector space, and relations as translations from head entities to tail
entities. Representative models of the former family are TransE [1], TransH [17]
and TransR [5]. TransE defines the score function for a triple (h, r, t) as:
S(h, r, t) = ‖h + r − t‖. TransH and TransR extend TransE to overcome the
limited capability of TransE to encode 1-N, N-1 and N-N relations. They de-
fine the score function for a triple as: S(h, r, t) = ‖h⊥ + r − t⊥‖, in which h⊥
and t⊥ are projected head and tail entities. TransH projects entities to relation
specific hyperplanes with wr as normal vectors, thus h⊥ = h − w>r hwr and
t⊥ = t−w>r twr. TransR projects entities from the entity space to the relation
space via relation specific matrices Mr, thus h⊥ = Mrh and t⊥ = Mrt. Let
(h, r, t) be a triple in K, and (h′, r′, t′) be a negative sample, i.e., (h′, r′, t′) is not
in K. The margin-based loss function lKM for (h, r, t) is defined as:

lKM ((h, r, t), (h′, r, t′)) = max(0, (γ + S(h, r, t)− S(h′, r′, t′))), (1)

where γ is a margin. The objective of translation-based models is to minimize the
margin-based loss function for all triples, i.e., LKM (K) =

∑
(h,r,t)∈K l((h, r, t), (h

′, r, t′)),

where (h′, r′, t′) is a negative example sampled for (h, r, t) during training.
The paragraph vector models represent documents in a continuous vector

space. Examples of models of this family are PV-DM (Distributed Memory) and
PV-SG (Skip Gram or DBOW) [4]. Both models learn embeddings for variable-
length documents, by training to predict words (in PV-DM) or word-contexts
(in PV-SG) in the document. For every document d, the objective of PV-DM is
to maximize the average log probability of a target word wt appearing in a given
context ct, conditioned not only on the context words but also on the document:

lDM (d) =
1

nd

nd∑
t=1

log p(wt|d, ct), (2)

4 We omit prefixes for the sake of readability.
5 Througout this paper, we denote vectors in lowercase bold letters and matrices in

uppercase bold letters.
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where p(wt|d, ct) = σ(b + Ug(d, ct)), and σ(·) is the logistic function, U and
b are weight and bias parameters, and g is constructed by concatenating (or
averaging) its parameters. The PV-SG objective is to maximize lDM defined as:

lDM (d) =
1

nc

nc∑
t=1

log p(ct|d), (3)

where p(ct|d) = σ(b + Ug(ct)). In this way, both PV-DM and PV-SG capture
similarities between documents by using both context and document embed-
dings to maximize the probability of context or target words. As a result, the
embeddings of similar documents are close in the embedding space.

4 Aligning Embedding Models

From Section 3, we see that the descriptions of Mike Tomlin in FreeBase and
Wikipedia bring complementary information. There is an intrinsic value in con-
sidering these two descriptions together, since they offer a more complete view
of the person. Embedding models offer a space where descriptions can be con-
trasted and compared, and it is therefore natural to ask ourselves if we can
integrate multiple descriptions by exploiting those models. However, embedding
models represent descriptions in different vector spaces. In other words, while
two embeddings generated by the same model are comparable, two embeddings
generated by different models are not.

We want to study if it is possible to bridge together different embedding
models, while preserving the characteristics of the individual models and en-
abling new operations. This operation, that we name alignment, should take
into account two characteristics, namely relatedness and similarity, explained
below.

Relatedness. Descriptions of the same real-world object are related. Let T be
a set of descriptions; the document and entity sets (D and E) are two disjoint
subsets of T . We introduce the notion of relatedness, to indicate that two de-
scriptions refers to the same real-world object, as a function rel : T 7→ T . rel is
a symmetric relation, i.e. if ti ∈ T relates to tj ∈ T , then the vice versa holds.

Similarity. In addition to relatedness, we intuitively introduce the notion of
similarity. Let’s consider the following example: Pittsburgh Steelers and San
Francisco 49ers are two football teams. They are two real-world objects, and in
the context of a set of real-world objects, we can define a notion of similarity
between them. For example, if we consider all the sport teams in the world,
the two teams are similar, since they share several features—they are football
teams, they play in the same nation and in the same leagues. However, in the
context of NFL, the two teams are less similar—they play on different coasts
and have different achievements. From this example, we observe that the notion
of similarity can be relation- or context-specific.

Our proposed model is agnostic to the notions of similarity adopted by indi-
vidual KB and document embedding models. We want our model to be robust to



the choice of individual embedding models. In this way, we only loosely interpret
the model-specific loss functions and and choice of similarity measure.

Alignment. The problem we investigate in our research is of aligning the em-
beddings of related descriptions. It is worth stressing, that alignment captures
both, the notion of relatedness and similarity. The goal is to obtain a space
where the embeddings of related descriptions are close (i.e. relatedness), while
preserving the semantics of their original embeddings (i.e., similarity).

Assumptions. In this study, we make the following assumptions. First, related-
ness is defined as a function that relates each entity of E to a document in D,
and vice versa. Formally, we denote this relation with reled and it holds: (i) reled
is injective, (ii) ∀e ∈ E , reled(e) ∈ D and (iii) ∀d ∈ D, reled(d) ∈ E . Based on
reled, we define the entity-document relatedness set as Q = {(e, d) | reled(e) =
d ∧ e ∈ E ∧ d ∈ D}, e.g. (m.0c5f j, dmt) ∈ Q.

The second assumption is based on the fact that, in real scenarios, it often
happens that only some relations between document and entities are known. We
therefore assume that the algorithm can access a relatedness set Q′ ⊂ Q.

In the following, we abuse the notation and we use d and e to indicate em-
beddings when it is clear from the context. When not, we use v(t) to indicate
the embedding of the description (either entity or document) t ∈ T .

5 A Regularized Multi-Task Learning Method for
Aligning Embedding Models

In this section we present KADE, a framework to align Knowledge base and
Document Embedding models. KADE can be separated into three parts, as
shown in Fig. 1: (i) a Knowledge Base embedding model, on the left, where
vectors are denoted by cirlces, (ii) a document embedding model, on the right,
where vectors are denoted by squares, and (iii) a regularizer process, in the
center.

The construction of the Knowledge Base (or document) embedding model is
represented by the arrows with dashed lines, which represent the moving direc-
tion for entity (or document) embeddings according to the underlying model.

Fig. 1: Illustration of the intuition behind KADE.



The colors and index numbers in the two models indicate that the vectors
are describing the same real-world object, i.e., (ei, di) ∈ Q, i ∈ [1, 4]. More-
over, (e1, d1), (e2, d2) and (e3, d3) are known related entity-document pairs, i.e.,
(ei, di) ∈ Q′, i ∈ [1, 3], while the relatedness information of (e4, d4) is not known,
i.e., (e4, d4) ∈ Q and (e4, d4) 6∈ Q′.

The regularization process builds an embedding space which represents both,
the document and the KB entity vectors. There are two regularizers: each of them
applies to the training of the document and Knowledge Base embedding, forcing
the related document and the entity vectors to be close in the vector space.
The regularizer process is shown through the arrows with dotted lines, which
represent the moving direction influenced by the related entity-document pairs.
This is done by exploiting the information from Q′, i.e., the regularizer process
cannot use the (e4, d4) pair, since it is not in Q′.

Regularizer for the Knowledge Base embedding model. We define KADE’s ob-
jective function LK for a Knowledge Base embedding model as follows:

LK(D,K) =
∑

(h,r,t)∈K
(h′,r,t′)/∈K

(
lKM ((h, r, t), (h′, r, t′))+

λk

(
‖v(h)− v(reled(h))‖+ ‖v(t)− v(reled(t))‖+

‖v(h′)− v(reled(h
′))‖+ ‖v(t′)− v(reled(t

′))‖
))

,

(4)

where lKM is defined in (1), v(reled(e)) is the embedding corresponding to the
document describing e (from the relatedness set), and λk is the regularizer pa-
rameter for the KB embedding model. If the related entity-document pair is
missing in Q′, then the regularization term for that entity is zero.

Regularizer for the document embedding model. Similarly, we define the KADE’s
objective function for a document embedding model as follows:

LD(D,K) =
∑
d∈D

(
lDM (d) + λd‖v(d)− v(reled(d))‖

)
(5)

where lDM is the loss function as defined in either (2) or (3), v(reled(d)) is the
embedding for the entity related to d, and λd is the regularizer parameter for
document embedding model. As above, if the related entity-document pair is not
in Q′, then the regularization term for the document is set to zero.

Learning Procedure. The learning procedure of KADE is described in Algo-
rithm 1. To learn the complete model, the algorithm trains the document and
the KB embedding models alternately. This is done by using batch stochas-
tic gradient descent, the common training procedure for these kinds of models.
Specifically, one iteration of the learning keeps the KB model fixed and updates
the document model. Within this step, the document model is updated for a
given number of iterations. After that, the KB model is updated by keeping the



Algorithm 1: Iterative learning of embeddings in KADE

Input: A Knowledge Base K and document corpus D, a KB embedding model KM and its
loss function LKM , a document embedding modem DM and its loss function LDM ,
regularizer parameters λK and λD, relatedness relation reled between entities in K
and documents in D, embedding dimension k, number of iterations num iters, loss
threshold ε < 1.0, iterations per model iter model.

Result: Document embeddings D ∈ R|D|×k,

Entity embeddings E ∈ R|E|×k.

1 Initialize E and D along with other model variables according to KM and DM; set
iters = 0, iters model = 0, loss change = km loss change = dm loss change = 1.

2 while iters ≤ num iters AND loss change > ε do
3 for ikm = 1 ; ikm ≤ iters model ; ikm = ikm + 1 do
4 LKM ← Calculated according to (1);

5 LK(K,D) ← Calculated according to (4) ;

6 Update E and other KM variables using the gradients of LK(K,D);

7 end
8 for idm = 1 ; idm ≤ iters model ; idm = idm + 1 do
9 LDM ← Calculated according to (2);

10 LD(K,D) ← Calculated according to (5);

11 Update D and other DM variables using the gradients of LD(K,D);

12 end
13 if iters > 0 then

14 km loss change ← |prev km loss− LK(K,D)|;
15 dm loss change ← |prev dm loss− LD(K,D)| ;
16 end

17 prev km loss ← LK(K,D) ;

18 prev dm loss ← LD(K,D) ;
19 loss change = max(km loss change, dm loss change);
20 iters ← iters+ 1;

21 end

document model fixed. In a similar way, this step lasts for a given number of
iterations. Then the next iterations of KADE proceeds in a similar fashion, until
convergence or a fixed number of steps.

6 Experimental Evaluation

Hypotheses. Our experiments aim at verifying three hypotheses. The model
learned by KADE retains the characteristics of the document (HP1) and KB
(HP2) embedding models, i.e. it does not break the semantics of the document
and KB models. Additionally, KADE represents documents and KB entities in
the same embedding space such that related documents and entities are close to
each other in that space (HP3).

Datasets. We consider three open datasets, which are widely used to benchmark

FB15k FB40k DBP50

Entitites 14,904 34,609 24,624
Relations 1,341 1,292 351

Total Triples 530,663 322,717 34,609
Train triples 472,860 258,175 32,388

Unique words 35,649 50,805 158,921

Table 1: Dataset sizes

KB embeddings. Their properties are
summarized in Table 1. Each of them
consists of a Knowledge Base and a doc-
ument corpus. Related documents are
known for all entities, and vice-versa.
FB15k [1] is derived from the most pop-
ular 15,000 entities in Freebase. The text



corpus is constructed from the corre-
sponding Wikipedia abstracts. FB40k6

is an alternative to FB15k, containing about 34,000 Freebase entities. It is sparser
than FB15k: it includes more entities but fewer relations and triples. The text
corpus is derived in the same fashion as for FB15k. DBP50 is provided by [11].
It is extracted from DBpedia, it has fewer triples than the other datasets, but
its documents are longer and its vocabulary is larger. We apply standard pre-
processing steps like tokenization, normalization and stopword removal on the
documents of the three datasets. The KB triples are split into training and test
sets, in a way that each entity and relation in the test set is also present in the
training set. The relatedness set Q contains pairs of Freebase/DBpedia entities
and documents describing the same real-world object. When not specified, ex-
periments use Q as known relatedness set. Otherwise, we describe how we built
Q′ ⊂ Q.

Methods. As explained in Section 3, for documents, we use two Paragraph Vec-
tor models: distributed memory (PV-DM) and skip-gram (PV-SG). For KBs, we
consider TransE, TransH, and TransR. The method configuration is indicated
in parenthesis, e.g. KADE(TransR,PV-SG). We use KADE(TransE, PV-DM)
as our reference configuration, denoted by KADEref . When KB or document
models are trained on their own, we refer to them as Independent models.

Parameters. The hyperparameters for TransE and TransR are embedding di-
mension k, learning rate α, margin γ, and a norm. TransH has an additional
weight parameter C. KADE further introduces the regularizers λk and λd.
We did a preparatory parameter search to find reasonable values for embed-
ding dimension k and regularizers λk, λd. The search was limited to KADEref

on FB15k and resulted in k = 100, λk = 0.01, and λd = 0.01. For the re-
maining parameters, we adopted the values reported by TransE authors [1]:
α = 0.01, γ = 1,norm = L1. We used these values for TransH and TransR as
well. We adopted C = 1 for TransH from [16].

The parameters for the document model are the embedding dimension k,
learning rate α, window size w, and number of negative samples nneg. After a
preparatory parameter search, we adopted α = 15, w = 5, neg = 35.

Experiments are iterated 9600 times7, in batches of 5000 samples. KADE
switches between models every ten training batches (iters model in Algorithm 1).

Implementation. We use our own implementation of TransE, TransH, TransR,
since some methods do not provide a reference implementation. To assess our
implementations, we ran the link prediction experiments of [1,17,5] with param-
eters values described above. Results are summarized in Table 2. For each model,
the performance of KADE is reasonably close to the originally reported values,
although they do not match exactly. These differences are due to parameter
settings and implementation details: We used the same parameters for all three

6 Available at https://github.com/thunlp/KB2E
7 This matches the number of training runs over the whole dataset reported in [1].
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TransE TransH TransR
ours Bordes [1] ours Wang [17] ours Lin [5]

HITS@10
raw 0.469 0.349 0.459 0.425 0.443 0.438

filtered 0.712 0.471 0.692 0.585 0.656 0.655

Mean rank
raw 225.410 243.000 234.494 211.000 229.433 226.000

filtered 86.304 125.000 97.527 84.000 92.689 78.000

Table 2: Performance of our implementations and published results on KB link
prediction. Higher HITS@10 values are better; lower mean rank values are better.

methods, while [5,17] optimized such parameters, and we found that slightly dif-
ferent sampling strategies, as implemented in [5], can further improve the result.
Ours, as well as other implementations of TransE 8, normalize the embedding
vectors during loss computation. This has a positive effect on performance.

It is worth noting that these slight differences in performance do not affect
the study of our hypotheses, which is to align document and KB embeddings
while retaining the semantics of the original models.

6.1 HP1: KADE Retains the Document Embedding Model

HP1 states that KADE retains the quality of document embedding models. We
study HP1 by using the document embeddings as features for binary classifiers9.
We report the results of KADEref for FB15k; we had similar results for FB40k.

We first build the category set by retrieving categories from Freebase for each
entity in FB15k. Since each entity is related to a textual document through Q, we
assign categories to the documents. As a result, we retrieved 4,069 categories,
with an average of 46.2 documents per category, a maximum of 14,887 docu-
ments10, and a minimum of one. To have enough positive and negative training
examples for each category, we remove categories that belonged to fewer than
10% or more than 50% documents, resulting in 27 categories, with an average
of 2,400 documents per category (max: 4,483, min: 1,502). For each category
C, we randomly select documents not belonging to C, so that we obtain equal
number of documents in positive and negative classes. Next, we randomly assign
70% documents from each class to the training set and the remaining 30% to
the testing set. Finally, we train a logistic regression classifier for each category
and test the classification accuracy on the testing set. As a result, we train two
classifiers for each category (54 classifiers in total): one related to KADE and
the other one related to the independent document embedding model PV-DM.

We repeated this procedure five times and report the average result (the stan-
dard deviations are small and omitted) in Fig. 2. KADE significantly improves
the classification accuracy on all categories. The average classification accuracy
from KADEref is 0.92, while the one from independent training is 0.80. On many

8 https://github.com/thunlp/KB2E
9 We preferred binary over multi-class classification because it is simpler to explain.

10 For the class http://rdf.freebase.com/ns/common.topic.
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Fig. 2: Accuracy of binary document classification using KADEref and indepen-
dently trained document model. The name of Freebase categories and number
of documents in each category is listed along the vertical bars.

categories, embeddings from KADE achieve an accuracy above 0.95, while the
maximum accuracy of embeddings from independent training is 0.89.

The classification accuracy of the document model increases when KADE
uses PV-SG rather than PV-DM. The accuracy in the independent case lifts
to 88%, with a maximum of 98%. It sill holds that KADE improves over the
independent models, even though in many cases the values rougly match.

The results we obtained in this experiment suggest that document embed-
dings learned by KADE are not worse than the one learned by independent doc-
ument embedding models. On the contrary, the document embeddings learned
by KADE perform better in document classification.

6.2 HP2: KADE Retains the KB Embedding Model

The second hypothesis relates to the ability of KADE to maintain the seman-
tics of the KB embedding model used in the alignment process. We study this
hypothesis by performing the link prediction experiment proposed in [1].

Similar to previous studies, for every triple in the test set, we construct cor-
rupted triples by replacing the head (or tail) entity with every other entity in the
Knowledge Base. While testing link prediction, we rank all true and corrupted
triples according to their scores and get the rank of current test triple.

We report the mean rank (MR) of the test triples and the ratio of test triples
in the 10 highest ranked triples (HIT@10). As noted by [1], some corrupted
triples be present in the KB. To cope with this, we report filtered results, where
corrupted triples that are present in the training set are removed.



FB15k FB40k DBP50
KADE indep. KADE indep. KADE indep.

TransE
HITS@10

raw 0.470 0.469 0.590 0.583 0.440 0.382
filtered 0.715 0.712 0.754 0.746 0.469 0.400

Mean rank
raw 221.257 225.410 835.899 962.244 1178.849 2451.215

filtered 82.053 86.304 471.996 598.209 1130.392 2403.093

TransH
HITS@10

raw 0.456 0.459 0.579 0.571 0.434 0.386
filtered 0.689 0.692 0.740 0.731 0.463 0.405

Mean rank
raw 233.073 234.494 857.130 1007.940 1174.965 2511.550

filtered 96.009 97.527 496.215 649.459 1126.766 2463.208

TransR
HITS@10

raw 0.414 0.443 0.554 0.556 0.376 0.374
filtered 0.651 0.656 0.705 0.711 0.395 0.392

Mean rank
raw 242.700 229.433 928.089 929.848 2414.541 2430.336

filtered 98.620 92.689 561.778 563.693 2366.314 2382.091

Table 3: HIT@10 and MR of KADE and independent training. HITS@10 reports
the fraction of true triples in the top 10 predicted triples (higher is better). MR
indicates the position of the original head (or tail) in the ranking (lower is better).

Table 3 compares the link prediction performance of KADEref and indepen-
dent training over the datasets. KADEref slightly but consistently outperforms
independent training. While there is always an improvement, it is more pro-
nounced on sparser datasets. We conduct the same experiment with TransH and
TransR with PV-DM as document model. All other parameters and experimental
protocols remain identical. In a few cases KADE embeddings do not outperform
the independent embeddings. However, the difference is small (< 7%), compared
to the differences introduced by the method or dataset.

Also in this case, experiments suggest that HP2 holds, and KADE retains
the semantics of the KB embedding models.

6.3 HP3: KADE Aligns KB and Document Embeddings

The first two hypotheses are meant to assess if KADE retains the semantics of
the embedding models. Our last hypothesis takes a different perspective, and it
aims at verifying if the resulting model is effectively aligning entity and document
embeddings. We study this hypothesis in two experiments.

Progression of KADE training. The first experiment tests if KADE brings doc-
ument and KB entity embeddings into the same embedding space. For this, we
randomly select 100 related entity-document pairs from Q′ and call this set QR.
At different stages of training (i.e. after different numbers of iterations), we take
both document and entity embeddings from QR. Then, we retrieve the most
similar entity embeddings learned by KADE using cosine similarity. In this way,
we get two ranked lists of 100 entities, corresponding to a pair qR ∈ QR: one
retrieved using the document embedding of qR as query, and another using the
entity embedding of qR as query. We compare the changes in set overlap of these
two ranked lists, and rank correlation as the training of KADE proceeds.
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Fig. 3: The process of embedding documents and KB entities in the same space,
with KADEref on FB40k. Shaded areas indicate the standard deviations.

Fig. 3 shows the results of this experiment for KADEref on the FB40k dataset.
In the early stages of training, set overlap (measured using Jaccard similarity)
as well as rank correlation (measured by the Spearman coefficient) are very
low, meaning that the two ranked lists are very different. Both measures show
significant improvements as training progresses, showing that KADE is able to
align the entities of documents and entities in the same space. We repeated
this experiment with the other datasets and we observed a similar behaviour.
The same holds when retrieving the document embeddings instead of entity
embeddings for query pairs in QR.

Alignment generalization by KADE. This experiment investigates to what ex-
tent KADE generalizes: can KADE align entity-document pairs that are not
available during training, i.e., which are not in Q′? We first introduce the align-
ment score as an evaluation measure, afterwards we present the results.

Given a query document d ∈ D, the alignment model orders all entities e ∈ E
with respect to their similarity to d. Let rd(e) ∈ [1, |E|] denote the rank of entity
e, retrieved for query document d. We define the rank re of a document d in an
analogous way. A perfect alignment model exhibits rd(e) = |E| iff (e, d) ∈ Q, i.e.,
the related entity is ranked highest out of all possible choices. We further define
the normalized version of the ranking measure as rNd (e) = (rd(e)−1)/(|E|−1) ∈
[0, 1]. We define rNe (d) analogously.

For a pool of test documents Dt ⊂ D and test entities Et ⊂ E , we average
the rankings for all document and entity queries (with respect to their related
counterparts) to get the alignment score:

AS := 1/2

(
1

|Et|
∑
e∈Et

rNe [reled(e)] +
1

|Dt|
∑
d∈Dt

rNd [reled(d)]

)

Next, we train KADE with varying sizes of Q′and examine to what extent
embeddings of entity-document pairs in Q \ Q′ are aligned by KADE. Note
that embeddings are still computed for all documents and entities, however, the
document-entity pairs in Q \Q′ are not regularized by KADE.
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Fig. 4: KADE aligns embeddings of related documents and entities. The x-axis
show the percentage of known related pairs (|Q′|/|Q|). We measure the alignment
score on a fixed set of 2% of Q. In the y-axis, 1 implies that for every query entity
(document), the related document (entity) was retrieved as the first result. 0.5
indicates the random baseline.

Fig. 4a show what happens when Q′ varies from 30% to 98% of Q. To ensure
comparability between the different training data sets, we required the same 2%
of Q to be omitted from all cases, and used them to calculate the alignment score.
This results in test sets sizes of 299 (FB15k), 693 (FB40k), and 493 (DBP50).

We compare KADE against a baseline model built with independently con-
structed embeddings for documents and entities to show the impact of regular-
ized multi-task learning. In this baseline model, the alignment is achieved by
projecting document embeddings onto entity embeddings, and vice-versa, i.e.:

∀e ∈ E : e = σ (reled(e)P1 + b1)∀d ∈ D : d = σ (reled(d)P2 + b2)

The sigmoid function σ allows the model to account for nonlinearity. The pro-
jection matrices P{1,2} and biases b{1,2} are estimated from Q′. The model is
evaluated on FB15k, with the same test set as used for KADE.

Fig. 4a shows that KADE’s performance improves when the size of Q′ in-
creases. This effect reflects that embeddings of test pairs are constrained by their
neighboring documents and entities.

Further, the performance differs across datasets. FB15k shows the best per-
formance. This can be explained by the fact that we optimized the model param-
eters based on this dataset. We further explain this result considering the dataset



density: higher interconnection allows more coherent embedding construction in
the document and entity models.

KADE consistently outperforms the baseline. Although the baseline enhances
with more training data, it only narrowly improves over random guessing (AS =
0.5). This indicates that independent embedding construction leads to incompat-
ible spaces and highlights the impact of KADE’s regularized multi-task learning.

The same experiment is repeated for the other KB or document models.
While the method is exchanged, the experimental setup and all parameters are
maintained. For KB models (Fig. 4b and 4c), we observe that the influence of
the dataset is much higher than the one of the KB model. This reflects the
results from Table 3. For document models, Fig. 4d shows the effect of using
PV-SG instead of PV-DM. As baseline, KADEref is plotted. Consistent with
results from Section 6.1, PV-SG outperforms PV-DM, independent of the KB
model. The effect is more pronounced if the size of Q′ is small.

The experiments in this section assess HP3: KADE aligns the embeddings
from different models in a common vector space, built according to the related-
ness among the descriptions.

7 Conclusion and Future Work

In this paper, we introduced KADE, a flexible regularized multi-task learning
method that represents embedding from heterogeneous models in a common em-
bedding space. We show that KADE can work with different KB or document
embedding methods. Our experiments showed that the KADE regularization
process does not break the semantics of the underlying document and Knowl-
edge Base embedding models, and in some cases it may even improve their
performance.

Looking at the assumptions we took, we think that a promising and im-
portant direction of this research is to cope with changes in the set of objects
that are considered. In other words, how can KADE cope with description of
new objects that are added to the document corpus or the KB? KADE makes
use of document embeddings that are pre-trained on a very large corpus. It
follows, that the word embeddings which the model learns are general enough
for new and unseen documents. This means that KADE might use the already
computed document embeddings to find embeddings for new documents. As sug-
gested in [4], it is possible to learn the embeddings for new documents by keeping
the network weights and other embeddings constant, and updating the gradients
of the document embedding for a few iterations. Similarly, translation-based KB
embedding models cannot deal with new entities out of the box. However, we
believe it may be possible to learn embeddings for unseen KB entities by using
approaches similar to the above one.
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